x^2=8388608

Simple and best practice solution for x^2=8388608 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2=8388608 equation:



x^2=8388608
We move all terms to the left:
x^2-(8388608)=0
a = 1; b = 0; c = -8388608;
Δ = b2-4ac
Δ = 02-4·1·(-8388608)
Δ = 33554432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{33554432}=\sqrt{16777216*2}=\sqrt{16777216}*\sqrt{2}=4096\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4096\sqrt{2}}{2*1}=\frac{0-4096\sqrt{2}}{2} =-\frac{4096\sqrt{2}}{2} =-2048\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4096\sqrt{2}}{2*1}=\frac{0+4096\sqrt{2}}{2} =\frac{4096\sqrt{2}}{2} =2048\sqrt{2} $

See similar equations:

| -169=13n | | 3(2x-5)=2(2x+3) | | t-16/4=-9 | | 7(6-s)=119 | | (4x+8)=20.x= | | 5(n+4)=37.5 | | 4(r-5)=-52 | | 2(4x-3)/5=8.4 | | 8y+16=64 | | 3(2x-60=-4(x-3) | | (4n+5)(8n-5)=180 | | 5+2r=25 | | 78/x=6.5 | | 29u=174 | | 15+s=49.7 | | 24+g=27 | | x^2-4x+153=0 | | (8x-9)+(2x-1)=180 | | (x+26/3=6 | | 9x=-10+7x | | 5.2u=9 | | 15/3x-2+6x/2x+6=9x/3x-2 | | 16+9=4y | | 5x-8/5x+6=3/4 | | 3x-12x=34-9x | | 8+3x=37 | | 3x^2+22=93 | | (1/2*c)-11=-21 | | 8-8(1+3x)=23 | | 80=38.62+.25x | | 53+e=-73 | | 8p=14p |

Equations solver categories